Experiments were conducted to investigate the potential of the efficient resource utilization of waste cow manure and corn straw in an agricultural ecosystem. In this study, a magnetic cow manure and straw biochar were synthesized by a co-precipitation method, and cadmium (Cd(II)) was removed by adsorption in aqueous solution. Several physicochemical characterization techniques were applied, including SEM, BET, Zeta, FTIR, Raman, XPS, and VSM. The effects of pH value, magnetic biochar content, adsorption kinetics, and isothermal adsorption on the adsorption of Cd(II) were investigated. The physicochemical characterizations revealed that the physical and chemical properties of the magnetic biochar were substantially changed compared to the unmodified biochar. The results showed that the surface of the biochar became rough, the number of oxygen (O)-containing functional groups increased, and the specific surface area increased. The results of the adsorption experiments showed that the adsorption capacity was affected by pH, magnetic biochar addition, Cd(II) concentration, and adsorption time. The adsorption kinetics and isothermal adsorption experiments showed that the Cd(II) adsorption processes of the cow manure and corn straw magnetic biochars were consistent with the Freundlich model and pseudo-second-order kinetic model. The results also showed that the Cd(II) adsorption effect of cow manure magnetic biochar was found to be more effective than that of corn straw magnetic biochar. The optimal conditions for Cd(II) adsorption were 800 celcius for cow manure magnetic biochar, with a pH value of 5 and 0.14 g biochar addition, and 600 celcius for straw magnetic biochar with a pH value of 8 and 0.12 g biochar addition. In conclusion, the cow manure magnetic biochar was an effective adsorbent for the absorption of Cd(II) in wastewater.