Biochar, as a soil amendment, can be applied to remediate heavy metal (HM) contaminated farmland. However, there is little research on the effect of tobacco biochar (TB) derived from tobacco waste on HM controlling in edible parts of vegetables. In this study, the impact of two TB levels on the plant growth, copper (Cu) and cadmium (Cd) accumulation in the edible parts of lettuce and chrysanthemum, and on Cu and Cd bioavailability of rhizosphere soil was investigated through in-situ field experiments. The results showed that TB has rich oxygen containing functional groups, high porosity, high nitrogen adsorption capacity. The addition of 5 t ha-1 and 10 t ha-1 TB significantly increased the shoot biomass of chrysanthemum, but had no effect on the growth of lettuce. Two levels of TB significantly increased the pH value, but decreased the available Cu and Cd concentrations of rhizosphere soil, thereby reducing the Cu and Cd accumulations in the edible parts of lettuce and chrysanthemum. The findings provided effective evidences that TB derived from tobacco waste is an efficient strategy for controlling Cu and Cd accumulation in the edible parts of vegetables to ensure agri-product safety production in HM-polluted farmland.