Transition metal iron and persistent free radicals (PFRs) both affect the redox properties of biochar, but the electron transfer relationship between them and the coupling reduc-tion mechanism of Cr(VI) requires further investigation. To untangle the interplay between iron and PFRs in biochar and the influences on redox properties, FeCl3-modified rice husk biochar (FBCs) was prepared and its reduction mechanism for Cr(VI) without light was eval-uated. The FBCs had higher surface positive charges, oxygen-containing functional groups, and PFRs compared with pristine rice husk biochar (BC). Phenoxyl PFRs with high electron-donating capability formed in biochar. The pronounced electron paramagnetic resonance signals showed that the PFRs preferred to form at lower Fe(III) concentrations. While a high concentration of Fe(III) would be reduced to Fe(II) and consumed the formed PFRs. Adsorp-tion kinetics and X-ray photoelectron spectroscopy analysis indicated that the FBCs effec-tively enhanced the Cr(VI) removal efficiency by 1.54-8.20 fold and the Cr(VI) reduction ef-ficiency by 1.88-9.29 fold compared to those of BC. PFRs quenching and competitive reduc-tant addition experiments revealed that the higher Cr(VI) reduction performance of FBCs was mainly attributed to the formed PFRs, which could contribute to-74.0% of Cr(VI) re-duction by direct or indirect electron transfer. The PFRs on FBCs surfaces could promote the Fe(III)/Fe(II) cycle through single electron transfer and synergistically accelerate similar to 52.3% of Cr(VI) reduction. This study provides an improved understanding of the reduction mechanism of iron-modified biochar PFRs on Cr(VI) in environments. (c) 2023 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.