Effect of pyrolytic temperatures on the 2,4-dichlorophenol adsorption performance of biochar derived from Populus nigra

To investigate the correlation between the physicochemical properties of biochar and its adsorption performance for 2,4-dichlorophenol (2,4-DCP), Populus nigra was subjected to oxygen-limited pyrolysis at temperatures ranging from 300 to 600 celcius. The experimental results showed that as the pyrolysis temperature increased, the specific surface area and degree of graphitization of the resultant biochar increased, but the amount of oxygen-containing functional groups decreased. Populus nigra biochar produced at 450 celcius exhibits the best adsorption performance for 2,4-DCP due to its excellent physicochemical properties and greater electron exchange capability. The removal of 2,4-DCP is a multi-step adsorption process dominated by chemisorption, which involved oxygen-containing functional groups-mediated hydrogen bonding, as well as pi-pi electron donor-acceptor (EDA) interaction between the aromatic rings and Cl atoms. The study highlights the potential of Populus nigra residues for producing biochar as an affordable and effective adsorbent for 2,4-DCP removal.