Pyrolysis of Solid Waste for Bio-Oil and Char Production in Refugees’ Camp: A Case Study

Table of Contents
Issue Date
Source

Abstract

The current research focuses on assessing the potential of municipal solid waste (MSW) conversion into biofuel using pyrolysis process. The MSW samples were taken from Zaatari Syrian Refugee Camp. The physical and chemical characteristics of MSW were studied using proximate and elemental analysis. The results showed that moisture content of MSW is 32.3%, volatile matter (VM) is 67.99%, fixed carbon (FC) content is 5.46%, and ash content is 24.33%. The chemical analysis was conducted using CHNS analyzer and found that the percentage of elements contents: 46% Carbon (C) content, 12% Hydrogen (H2), 2% Nitrogen (N2), 44% Oxygen (O2), and higher heat value (HHV) is 26.14 MJ/kg. The MSW pyrolysis was conducted using tubular fluidized bed reactor (FBR) under inert gas (Nitrogen) at 500 °C with 20 °C/min heating rate and using average particles size 5–10 mm. The products of MSW pyrolysis reaction were: pyrolytic liquid, solid char, and gaseous mixture. The pyrolytic oil and residual char were analyzed using Elemental Analyzer and Fourier Transform Infrared Spectroscopy (FTIR). The results of FTIR showed that oil product has considerable amounts of alkenes, alkanes, and carbonyl groups due to high organic compounds contents in MSW. The elemental analysis results showed that oil product content consists of 55% C, 37% O2, and the HHV is 20.8 MJ/kg. The elemental analysis of biochar showed that biochar content consists of 47% C, 49% O2, and HHV is 11.5 MJ/kg. Further research is recommended to study the effects of parameters as reactor types and operating conditions to assess the feasibility of MSW pyrolysis, in addition to the environmental impact study which is necessary to identify and predict the relevant environmental effects of this process.